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Suspension bridges are long-span #exible structures susceptible to various types of
wind-induced vibrations such as bu!eting actions. In this paper, a three-dimensional "nite
element model formulated to deal with suspension bridges under turbulent wind with
e!ective attack angle is presented. In this model, all sources of geometric non-linearity such
as cable sag, force-bending moment interaction in the bridge deck and towers as well as
changes in bridge geometry due to large displacements are fully considered. The wind loads
which include bu!eting loads and self-excited loads are converted into the time domain by
using a computer simulation technique to form aerodynamic damping and sti!ness matrices
as well as element loading vectors. Furthermore, a more re"ned model of wind loads is
constructed in order to investigate the e!ect of an instantaneous change in e!ective attack
angle of turbulent wind on bridge bu!eting response. By comparing the results with those
obtained by classic bu!eting theory through an example bridge, the validity of the presented
method is veri"ed.

( 2000 Academic Press
1. INTRODUCTION

Early this century, with the rapid development of construction material and technology,
many long-span suspension bridges were built all over the world. However, these bridges
exhibit special characteristics such as high #exibility, low structural damping and light in
weight, which are very susceptible to wind actions. The Tacoma disaster in 1940 has focused
engineers' attentions on the vibration characteristics of suspension bridges and the
responses to wind excitations. Since then, numerous researchers [1}7] have made
signi"cant contributions on the stability of suspension bridges under wind actions which
form the foundation of bridge aeroelasticity.

Bu!eting action is a type of vibration motion induced by turbulent wind. As natural wind
is not steady but turbulent in character, wind #uctuations in the vertical and horizontal
directions are random in space, and thus the wind pressures along the bridges are random in
time and space. Depending on the spectral distribution of the pressure vectors, certain
modes of vibration on the whole bridge may selectively be excited. In fact, these
wind-induced bu!eting actions are related not only to wind speed but also to the shape of
the cross-section of the bridge deck and the interaction between the bridge and wind motion
[8]. Unlike other wind-induced vibrations such as #utter, vortex shedding and galloping,
the bu!eting response does not generally lead to catastrophic failure. This is probably the
reason that less attention has been paid to this aspect in the last two decades. However, with
the record-breaking span lengths of modern suspension bridges, bu!eting response is
0022-460X/00/220311#17 $35.00/0 ( 2000 Academic Press
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greatly increased which may cause serious fatigue damages to structural components and
connections, instability of vehicles travelling on the bridge deck and discomfort to
pedestrians. By now, with the high expectation of the performance of modern suspension
bridges, bu!eting analysis is one of the most important aspects of structural reliability under
turbulent wind.

The classic bu!eting analysis method is mainly based on Scanlan's theory [5] in which
#utter derivatives, joint acceptances as well as admittance functions are introduced to
consider the temporal and spatial distributions of wind loads. However, this method resorts
to model superposition, and hence ignores the coupling between the modes of vibration. On
the other hand, due to limitations in the frequency domain, it cannot re#ect the entire
response procedure of bridge motions, and hence cannot supply enough information for the
analysis of element fatigue and assessment of service comfortability of bridges under wind
actions.

In this paper, a time domain bu!eting analysis method is proposed to analyze the
bu!eting response of suspension bridges under turbulent wind in order to provide useful
information for further study on element fatigue, bridge comfortability as well as bridge
safety. In this method, a three-dimensional "nite element model which takes into account all
geometric non-linearity has been developed to model suspension bridges. Based on
Scanlan's method, wind loads including bu!eting loads and self-excited loads are described
as functions of aerodynamic parameters which can be obtained through wind tunnel tests.
These wind loads are converted into the time domain by using a computer simulation
technique. In order to investigate the e!ect of the instantaneous change in e!ective attack
angle of turbulent wind on bridge bu!eting response, a more re"ned model of wind loads
has been developed. Finally, the Newmark-b step-by-step numerical integration algorithm
is used to calculate the bu!eting responses of the bridge. By comparing the results with
those obtained by classic bu!eting theory, the validity of the proposed method has been
con"rmed.

2. WIND FORCES

According to the classical airfoil theory, it is assumed that the wind velocity at any one
point along a bridge is composed of three components: one for the mean part;, one for the
#uctuating part u (x, t) in the along-wind direction and one for the #uctuating part w (x, t) in
the vertical direction. These three parts of wind components impose drag D, lift ¸ and
moment M on a bridge deck, as shown in Figure 1.

Normally, the total wind load is made up of the steady state wind loads, the bu!eting
loads and the self-excited loads. However, the steady state wind loads are only related to the
mean part of the oncoming wind #ow and are assumed to act on the bridge deck at all times
during the bu!eting consideration of the bridge. Therefore, these can be regarded as the
static loads which only shift the bridge's equilibrium position to a new position and are not
directly relevant to bu!eting responses. In the following bu!eting analysis, the e!ects of
steady state wind loads are not taken into consideration.

2.1. BUFFETING LOADS

Bu!eting loads are caused by the #uctuating part of the wind velocity of which the
along-wind part u and the vertical part w are much smaller than the mean wind velocity;.
By neglecting u2, w2 and uw, bu!eting loads per unit span can be expressed according to



Figure. 1. Wind components at a point along bridge axis.
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quasi-steady theory as follows:
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where o is the air density, C
D
, C

L
and C

M
are the drag, lift and moment coe$cients obtained

by wind tunnel tests on cross-section model of the bridge, C@
L

and C@
M

are slopes of C
L

and
C

M
, a

0
is the e!ective attack angle of the oncoming wind, A is the cross-wind projected area

(per unit span) normal to the mean wind speed and B is the deck width.
Computer simulation technique is used to generate the #uctuating wind according to the

wind spectrum recorded from the bridge site because it is quite di$cult to obtain the
representative #uctuating parts of wind in practice. Kovacs et al. [9] have presented
a method to simulate the #uctuating wind velocity along a bridge deck. In their method, the
#uctuating wind velocities u (x, t) and w (x, t) are assumed to consist of a series of
components in the frequency domain from 0)001 to 1)5 Hz. This is the scale of the wind
speed which has the greatest e!ect on the bu!eting responses of bridges. Each component is
a complex vector, i.e., each has an absolute size and a starting phase. The simulation takes
place similar to a usual random signal in which the component vectors are rotated with the
speed of their own angular velocity and are summed vectorially. The #uctuating wind
velocity constitutes the real part of the resultant. The turbulent part of the momentary wind
velocity in point x can be generated from Davenport's coherence formula [9] as in the
following:
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where C(m, n)"e~2KnDmD@U"COH2
D
(m, n), COH

D
(m, n)"e~Kn DmD@U. K is the coherence

decaying coe$cient, S (n) is the target spectrum, m
k
is the generation spot, m is the distance

between two generated spots, n
j
is the frequency, /

kj
is the starting phase which is uniformly

distributed between 0 and 2n. Kovacs et al. [9] also suggested that the decaying coe$cient
can be taken as 4)5 for longitudinal and 7)5 for transverse velocity components. The
bu!eting loads along the bridge deck can be calculated by substituting the generated
#uctuation wind velocities into equation (1).

2.2. SELF-EXCITED LOADS

The self-excited loads are caused by interaction between the wind motion and the
structure. It involves the interaction of aerodynamic and inertial forces with the elastic
structure such that the aerodynamic forces inject additional energy into the oscillating
structure and increase the magnitude of vibration sometimes to catastrophic levels. It has
been a tradition that the self-excited loads are expressed in the form of indicial functions as
suggested by Scanlan [10]. However, Lin [11] considers that there are some redundancies
in the classical formulations. Based on the assumptions that the self-excited loads are
generated by linear mechanism, Lin suggests another simple mathematical model for
self-excited forces for investigation of the aerodynamic stability of long-span suspension
bridges. The self-excited loads are expressed in terms of convolution integrals between
bridge deck motion and impulse response function which is shown to be equivalent to
classical indicial function type representation. Lin's model can be summarized as
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where f
Ma(t), fMh

(t), f
La(t), fLh(t), fDa (t), and f

Dp
(t) are response functions due to unit impulse

displacement a, h and p. From these equations, it is seen that the aerodynamic coupling of
the modes is induced by M

h
(t), ¸a(t) and Da(t).

Applying the Fourier transform to equations (3) and then comparing it with Scanlan's
notion in terms of aerodynamic derivatives, the relationship between transfer functions and
aerodynamic derivatives can be obtained as
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(i"1, 4) are non-dimensional #utter derivatives obtained by wind

tunnel tests on a cross-section of the deck.
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From classical airfoil theory, the transfer functions may be reasonably approximated by
rational functions, speci"cally for transfer functions of "rst order linear "lters. The transfer
functions F

Ma can, therefore, be expressed as
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Comparing equation (5 with equation (4), the #utter derivatives can be obtained as
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In the above equations, v is the reduced velocity and is de"ned as v"2n;/Bn [11]. The
unknown parameters C

k
and d

k
can be obtained from least-squares "tting of equations (6)

and (7). In this paper, a total of six unknown parameters C
i
(i"1, 6) are used to compose the

"rst order linear "lters. By taking the inverse Fourier transformation of the transfer
functions, the time domain expression of impulse response functions can be obtained.
Substituting these impulse response functions into equation (3) yields
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The other "ve items including M
h
(t), ¸a(t), ¸h

(t), Da(t) and D
p
(t) can be obtained similarly. It

should be noted that every set of parameters C
i
(i"1, 6) for Ma(t), Mh

(t), ¸a(t), ¸h
(t), Da (t),

D
p
(t) is di!erent.

2.3. REFINED MODEL OF WIND LOADS

In usual bu!eting analysis, the oncoming wind #ow is assumed to occur from the
direction normal to the bridge span, i.e., the e!ective attack angle of wind is zero. However,
during the bu!eting process, the bridge deck has not only translational displacements but
also rotations, which lead to the instantaneous changes of the attack angle between the
bridge deck and the wind direction. The change in attack angle causes a change in wind
loads on the bridge decks. For certain shapes of cross-sections of bridge decks, due to their
sensitivity to wind direction, the e!ect of changes can be quite signi"cant. Therefore, it is
necessary to consider the e!ect of the changes in attack angle of the wind on the bu!eting
response of bridges.

In the bu!eting analysis, the bridge deck is subjected to the mean part and #uctuating
part of wind #ow. At the same time, the point of attack of the generated wind loads, which
are generally assumed as concentrated loads, is not necessarily at the centerline of the bridge
deck but is related to wind frequency [12]. In this paper, the point of attack of wind loads is
assumed to be at the 1

4
chord point of the deck. The relationship between bridge deck

motion and wind motion at time t is shown in Figure 2. From this "gure, it can be seen that
the e!ective attack angle a

e
is

a
e
"W!a, (9)



Figure. 2. The relationship between relative velocity <
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and e!ective attack angle a
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where
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pR , hQ and aR are the velocities of the bridge deck at time t with respect to the transverse, vertical
and rotational directions, respectively; m

l
the distance between point of attack of wind loads

and centerline of bridge deck is taken as B/4 in this analysis; and a is the rotation angle of
the bridge deck at time t. Considering the change in wind loads due to the instantaneous
change in e!ective attack angle, the wind loads including lift, drag and moment at time t can
be rewritten as

F
L
(t)"¸ (t)cosW#D(t)sinW, (12a)

F
D
(t)"¸ (t)sin W!D(t)cosW, (12b)

F
M

(t)"M(t) (12c)

It should be emphasized that the total lift, drag and moment is closely related to the e!ective
attack angle of wind on the bridge deck because the lift, drag and moment coe$cients as
well as the aerodynamic derivatives of bridge deck vary with the wind attack angle. At every
time step, the wind loads should be calculated based on the e!ective attack angle and
corresponding wind tunnel test data.

3. STRUCTURAL IDEALIZATION

Normally, torsional sti!ness of suspension bridges with box girder cross-sections is large,
and hence the decks can be idealized as three-dimensional spine beam structures as shown



Figure. 3. Suspension bridge idealization in a three-dimensional space.
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in Figure 3. The major structural elements of a suspension bridge are:
(a) Cable element: The length of cable spanning between hangers which is capable of

resisting axial tensile force only.
(b) Hanger element: The vertical member between a cable node and the deck which is

capable of resisting tensile force only.
(c) Beam element: The length of the deck spanning along the centerline of the bridge

between a pair of nodes on the centerline. The hanger and deck elements are connected
by horizontal rigid arms. They have bending sti!ness in the vertical and lateral
directions and are capable of resisting torsional stresses.

(d) ¹ower element: Each tower is represented by a three-dimensional framework fully "xed
against movement at its base. In this frame, every element is a beam element having
both bending sti!ness and torsion sti!ness.

Usually, bridge elements from the towers, deck, cables and hangers can be represented by
two types of "nite elements, i.e., spatial beam elements for towers and deck and cable
elements for cables and hangers. In spite of the fact that the behavior of the material of the
structural elements in a long-span bridge is linear elastic, the overall load}displacement
relationship for the structure is non-linear [13]. This overall non-linear behavior originates
from (i) the in#uence of cable sag to its equivalent modulus of elasticity, (ii) the e!ect of
initial stresses on structural sti!ness and (iii) the e!ect of large displacements on structural
sti!ness and loads.

3.1. CABLE ELEMENTS

Due to the very small bending sti!ness, cable elements can be regarded as elements
capable of resisting axial force only without any bending moment. In three-dimensional
analysis, cable elements are composed of two nodes that have a total of six degrees of
freedom as shown in Figure 4. For a cable element, the displacement vector MXN can be
written as MXN"[u
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]T.



Figure. 4. Cable element at local co-ordinate system.
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The non-linear behavior of cable elements results from its sag phenomenon. The axial
sti!ness of cable elements is a!ected by the cable sag that is greatly in#uenced by the
amount of tension in the cable. When the cable tension increases, the sag decreases and
apparent axial sti!ness increases. In this paper, an equivalent straight chord member with
an equivalent modulus of elasticity that combines both the e!ects of material and geometric
deformations is used to account for this variation in cable axial sti!ness [14]. The
equivalent cable modulus of elasticity is given by

E
eq
"

E

1#((ogl )2/12p3)E
(13)

in which E
eq

is the equivalent modulus, E is the Young's modulus of cable material, o is the
density of the cable, l is the horizontal projected length and p is the tension stress of the
cable. The total sti!ness matrix of a cable element is, therefore, a combination of standard
geometric sti!ness matrix and elastic sti!ness matrix.

3.2. BEAM ELEMENTS

When assuming small deformations in any structural system, the axial force and #exural
sti!nesses of members in bending are usually considered to be uncoupled. However, when
deformations are no longer small, there is an interaction between axial and #exural
deformations in such members under the combined e!ect of axial force and bending
moment. As a result, the e!ective sti!ness of the member decreases for a compressive axial
force and increases for a tensile force. In a similar manner, the presence of bending moments
will also a!ect the axial sti!ness of the member. In traditional linear analysis, this
interaction or coupling e!ect is negligible. However, for #exural structures such as
long-span suspension bridges, large displacements will occur. This interaction can be
signi"cant and should be considered in any non-linear analysis.



Figure. 5. Beam element at local co-ordinate system.
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In three-dimensional analysis, a spatial beam element has 12 degrees of freedom as shown
in Figure 5. For beam elements, the displacement vector MXN can be written as
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Analogous to that of cable elements, the sti!ness of beam elements is composed of two
parts: elastic sti!ness and geometric sti!ness. Based on large displacement theory,
a geometric sti!ness matrix of beam elements incorporating the contribution of axial force
and bending moments has been derived by Pan et al. [15] and used in this analysis.

4. EQUATIONS OF MOTION

The equations of motion in terms of a nodal displacement vector [;] for a bridge
structural system under wind loads can be expressed in conventional matrix notation as

[M][;G ]#[C][;Q ]#[K][;]"[P], (14)

where [M] is a diagonal matrix containing the mass and mass moment inertia of all
elements lumped at the nodes, [C] the structural damping matrix taken as Rayleigh's
damping, [K] the structural sti!ness matrix including elastic sti!ness matrix and
geometrical sti!ness matrix, and [P] the total wind load which includes bu!eting wind
loads [P

bu
] and self-excited wind loads [P

se
].

When equation (8) is observed more closely, it is found that the self-excited loads can be
expressed in three parts: aerodynamic sti!ness part, aerodynamic damping part and motion
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history part, as follows:
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The other "ve load items in equation (3) can also be described analogously. Combining all
the aerodynamic sti!ness parts and damping parts together, the aerodynamic sti!ness and
damping matrix in the local co-ordinate system can be set-up. The aerodynamic sti!ness
matrix of an element can be written as
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Regarding the motion history parts, it can be seen that the items involve convolution
integrals of velocities. These series integrals can be summarized as

I
j
"P

tj

~=

exp[(!c
i
;/B)(t

j
!q)]dQ (q) dq. (17)

It can be seen that for calculating their values, the integral I
j
must be evaluated at every time

step t
j
which is quite time consuming. Besides, the motion history for all elements must be

stored, thus occupying a large memory of the computer. To tackle these di$culties,
a recursive algorithm for evaluating the integral is derived as follows:
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From the above equation, it can be seen that only the quantities involving I
j~1

and d
j~1

at
time t

j~1
need to be stored for evaluating I

j
.

In summary, the motion equation can be rewritten as

[M][;G ]#M[C]![C
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]N[;Q ]#M[K
e
]#[K

g
]![K
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]N[;]"[P

bu
]#[P

seh
], (19)

where [K
e
] is the elastic sti!ness matrix, [K

g
] the geometrical sti!ness matrix, [P

bu
] the

bu!eting load vector, [K
se

] the aerodynamic sti!ness matrix due to self-excited wind loads,
[C

se
] the aerodynamic damping matrix due to self-excited wind loads, and [P

seh
] the

self-excited wind loads related to motion history.

5. CASE STUDY*BUFFERING ANALYSIS OF TSING MA BRIDGE

The Tsing Ma Bridge (Figure 6) [16], an integral component of the Airport Core Projects
in Hong Kong, was opened to tra$c in 1997. This bridge has an overall length of 2200 m
with a main suspended span of 1377 m. It is the longest suspension bridge carrying both
road and rail tra$c in the world. The main support towers are concrete structures over
200 m high. The two main cables, each of which was formed from nearly 40,000 individual
Figure. 6. General layout of the Tsing Ma Bridge (extracted from reference [16]).



TABLE 1

Aerodynamic coe.cients

C
1

C
2

C
3

C
4

C
5

C
6

M 0)26412 !0)51993 0)16645 0)29121 13)43210 5)87260
I !1)08827 !2)79466 0)99064 1)06341 13)09312 229)358

Figure. 7. Drag, lift and moment coe$cient curves of the Tsing Ma Bridge.
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steel wires of 5 mm diameter, are approximately 1 m in diameter. The typical steel
box-girder deck is 41 m in width, carrying a dual three-lane expressway together with
double rail tracks for the Airport Railway.

The drag, lift and moment coe$cient of the typical deck of the Tsing Ma Bridge are
shown in Figure 7. Based on the wind tunnel test data [16], the unknown aerodynamic
coe$cients C

1
}C

6
have been determined and tabulated in Table 1.

In the following study, Simiu spectrum and Panofsky}McCormick spectrum with a mean
wind speed of ;"60 m/s are chosen as the along-wind and vertical target spectrum of
wind #uctuations respectively. The Newmark-b step-by-step numerical integration
algorithm with c"0)5 and b"0)25 is used to calculate the bu!eting responses of the Tsing
Ma Bridge. The number of total time steps is taken as 1000 with a time interval of 0)2 s.

The bu!eting responses of the Tsing Ma Bridge are calculated in two cases: (i) without
consideration of e!ective attack angle of the wind and (ii) with consideration of e!ective
attack angle of the wind. The corresponding responses at the mid-span and quarter-span
under a mean wind velocity of ;"60 m/s are shown in Figures 8}15.

From these "gures, it can be seen that whether it is in case (i) or (ii), the peak vertical
displacement at quarter span is much larger than at mid-span while the peak torsional
response is much smaller. This phenomenon is probably due to the fact that the "rst
vibration mode excited makes the greatest contribution to structural response. For the
Tsing Ma Bridge, the "rst vertical vibration mode shape is antisymmetrical while the "rst
rotational vibration mode shape is symmetrical. The peak vertical responses, therefore,
occur at quarter-span rather than mid-span while the peak rotational responses occur at
mid-span.



Figure. 8. Vertical response at mid-span without consideration of attack angle.

Figure. 9. Torsional response at mid-span without consideration of attack angle.

Figure. 10. Vertical response at quarter-span without consideration of attack angle.
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Figure. 11. Torsional response at quarter-span without consideration of attack angle.

Figure. 12. Vertical response at mid-span with consideration of attack angle.

Figure. 13. Torsional response at mid-span with consideration of attack angle.
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Figure. 14. Vertical response at quarter-span with consideration of attack angle.

Figure. 15. Torsional response at quarter-span with consideration of attack angle.
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It can also be seen that considering the e!ect of wind attack angle apparently leads to
larger bu!eting responses. For mid-span, the peak vertical and torsional bu!eting responses
increase by 11)7 and 9)9% and for quarter-span, the increases are 11)9 and 10)8%
respectively. On the other hand, when the e!ect of wind attack angle is considered, the
root-mean-square value of the vertical responses at mid-span and quarter-span are 0)091
and 0)131 m respectively. Compared to the values calculated without considering wind
attack angle, which are alternatively 0)085 and 0)127 m, the di!erences are only 5)8 and
3)1%. From these results, it is found that for the Tsing Ma Bridge, the instantaneous change
in wind attack angle leads to greater increase in the peak vertical and rotational response
but it has less e!ect on the whole bu!eting process.

According to classic bu!eting theory, the root-mean-square values of vertical responses
at mid-span and quarter-span are respectively 0)094 and 0)133 m. Through comparison, it
can be seen that whether the instantaneous change in wind attack angle is considerated or
not, the calculated root-mean-square values of bu!eting response are in good agreement
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with the results obtained by traditional bu!eting theory, with a di!erence of not more than
10%. Furthermore, when compared with results computed without considering wind attack
angle, the results taking into account the instantaneous change in wind attack angle are
closer to those obtained using the classic bu!eting theory.

It should be emphasized that the e!ect of e!ective attack angle of wind on the bu!eting
responses for the Tsing Ma Bridge may not be extended to other cases, as it depends very
much on the shape of the cross-section of the bridge deck. For other bridge decks, the lift,
drag and moment coe$cients as well as the aerodynamic derivatives may be quite di!erent
from those of the Tsing Ma Bridge. Hence, the e!ect of instantaneous change in wind attack
angle on the bu!eting responses may be quite di!erent.

6. CONCLUDING REMARKS

In this paper, a time domain bu!eting method is presented to analyze the bu!eting
response of long-span suspension bridges under turbulent wind. In the bridge model, all
geometrical non-linearities such as cable sag, axial force}bending moment interaction in the
bridge deck and towers as well as changes in the bridge geometry due to large displacements
are considered. Based on Scanlan's method, the wind loads including bu!eting loads and
self-excited loads are described as functions of aerodynamic parameters obtained through
wind tunnel tests and converted into the time domain by using a computer simulation
technique. The computational results are, therefore, more accurate than those obtained by
the classic spectrum method which is limited in linearization scope. In addition, this method
can also reveal the response process of the entire bridge which may be useful in other studies
such as the structural health monitoring system and the real-time tra$c control system.
Compared with the results obtained by classic bu!eting theory through an example bridge,
the Tsing Ma Bridge, the validity of the proposed method is veri"ed.

In order to investigate the e!ect of an instantaneous change in e!ective attack angle of
turbulent wind on bridge bu!eting response, a more re"ned model of wind loads has been
established. It is found that for the Tsing Ma Bridge, as instantaneous change in attack
angle of the wind leads to larger peak bu!eting responses but has a lesser e!ect on the entire
bu!eting process.
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